Does Cr(CO)₃ Complexation Reduce the Aromaticity of Benzene?

Paul von Ragué Schleyer,*,^{†,‡} Boggavarapu Kiran,[‡] Dan V. Simion,[§] and Ted S. Sorensen^{*,§}

Contribution from the Computational Chemistry Annex, University of Georgia, Athens, Georgia 30602-2525, Computer-Chemie-Centrum, Institute fur Organische Chemie der Universität Erlangen-Nurnberg, Henkestrasse 42, D-91054 Erlangen, Germany, and Department of Chemistry, University of Calgary, Calgary, Alberta T2N 1N4, Canada

Received June 23, 1999

Abstract: Ring currents in (C₆H₆)Cr(CO)₃, **1**, (*cis*-1,3-butadiene)Cr(CO)₄ (**4**), (C₆H₆)₂Cr (**5**), (C₄H₄)Fe(CO)₃ (**6**), and (*cis*-1,3-butadiene)Fe(CO)₃ (**8**) have been assessed by $\sigma - \pi$ disected nucleus independent chemical shift (NICS) calculations. Shielding contributions from the C-C(π) orbitals to the NICS values reveal that there is no quenching of ring current in the benzene ring of **1** or in dibenzene chromium **5**. The previously reported paratropic ring current for **1** is shown to be a consequence of latent aromaticity in 1,3-butadiene chromium tetracarbonyl **4** (one of the molecules used in the magnetic susceptibility equation). NICS values, a diatropic ring current, and a positive aromatic stabilization energy (ASE) all point to this aromaticity. NICS values for cyclobutadiene iron tricarbonyl, **6**, show moderately sized diamagnetic shielding above the plane of the four-membered ring. In addition, **6** has a negative magnetic susceptibility exaltation (MSE) (diatropic ring current), quite opposite from the large paratropic current calculated for cyclobutadiene (D_{2h}) itself. Evaluated using "strain corrected" isodesmic reactions, **6** has a large ASE in contrast to a large destabilization calculated for cyclobutadiene with the same equation. The 1,3-butadiene complex **8** also shows features of three-dimensional aromaticity, NICS(1) – 8.7, NICS(1)_{π} – 2.8, and a moderate ASE stabilization energy (7.9 kcal/mol, eq 7), but this complex has a negligible MSE of –1.0 ppm cgs. We predict the ring current order to be the following: benzene ~ **1** ~ **5** > **6** > **4** > **8**.

Introduction

The effect of $Cr(CO)_3$ complexation on the aromaticity of benzene has been debated for over 30 years.^{1–11} Such complexation results in a 2 ppm shift of the benzene protons in $(C_6H_6)Cr(CO)_3$ (1), i.e., into the olefinic region, but reduction of the ring current is only one of the possible reasons.^{2–11} Cleverly designed molecules (e.g. 2 and 3) in which monitor protons are located above arene ring faces, presumably in the shielding zones, gave conflicting results. Keller reported³ only small (0.05 ppm) additional shielding on complexation to form 2 but the proton is 2.628 Å from the ring.¹² The two rings in metacyclophane, **3**, afforded a direct comparison.⁹ The monitor proton involved with the complexed arene was 1.3 ppm downfield of the signal for its counterpart indicating a weakening

- (4) McGlinchey, M. J.; Fletcher, J. L. Can. J. Chem. 1975, 53, 1525–1529.
- (5) McGlinchey, M. J.; Tan, T. S. *Can. J. Chem.* **1974**, *52*, 2439–2443.
 (6) Emanuel, R. V.; Randall, W. E. *J. Chem. Soc. A* **1969**, 3002–3006.
- (7) Price, J. T.; Sorensen, T. S. Can. J. Chem. 1968, 46, 515–520.
 (8) Fritz, H. P.; Kreiter, C. G. J. Organomet. Chem. 1967, 7, 427–430.
- (9) Langer, E.; Lehner, H. J. Organomet. Chem. **1979**, *173*, 47–52.
- (10) Elschenbroich, C.; Spangenberg, B.; Mellingof, H. Chem. Ber. 1984, 117, 3165-3168.
- (11) Jenneskens, L. W.; de Wolf, W. H.; Bickelhaupt, F. J. Organomet. Chem. 1990, 390, 171–177.
- (12) **2** and **3** optimized by the PM3(tm) method using Spartan Version 5.0.1 (Wavefunction, Inc.: 18401 Von Karman Ave., Irvine, CA 82715).

of the ring current due to $Cr(CO)_3$ complexation. Again these monitor protons are rather remote (2.635 Å for **3**)¹² and are not located in the optimum positions, i.e., directly above the ring centers (cf. **2** and **3**). No definite answer to the title question can be deduced from these studies.The two most recent investigations employed quite different methods and came to opposite conclusions.^{1,2} The changes in geometry (reduced bond fixations), as observed from the NMR chemical shifts, in a Cr-(CO)₃ complex of benzoannulated-[14]annulene were interpreted to show that complexation actually increased the aromaticity of the benzene moiety.²

Simion and Sorensen¹ evaluated the magnetic susceptibility exaltation (MSE)^{13–15} of **1**, as well as the aromatic stabilization energy (ASE) by employing isodesmic eq 1 (computed at the B3LYP/6-311+G** levels). The comparison data for the similar evaluation of benzene (eq 2) indicates that **1** is antiaromatic (positive MSE) and has sharply reduced ASE.

$$1 (C_{3v}) + 3(\text{ethylene}) \text{Cr}(\text{CO})_5 (C_{2v}) = 3(1.3-\text{butadiene}) \text{Cr}(\text{CO})_4 (C_s) + \text{Cr}(\text{CO})_6 (O_b) (1)$$

 $MSE(\Lambda) = 12.3 \text{ ppm cgs}; ASE(\Delta E) = 18.5 \text{ kcal/mol}$

$$C_{6}H_{6}(D_{6h}) + 3C_{2}H_{4}(D_{2h}) = 3C_{4}H_{6}(C_{2\nu})$$
(2)

 $MSE(\Lambda) = -15.1 \text{ ppm cgs}; ASE(\Delta E) = 34.1 \text{ kcal/mol}$

We now propose a resolution to these seeming discrepancies. We apply a refined NICS (Nucleus Independent Chemical Shift) method, which gives the individual contributions to the NICS

[†] University of Georgia.

[‡] Institute fur Organische Chemie der Universität Erlangen-Nurnberg.

[§] University of Calgary.

⁽¹⁾ Simion, D. V.; Sorensen, T. S. J. Am. Chem. Soc. **1996**, 118, 7345–7352.

⁽²⁾ Mitchell, R. H.; Zhou, P.; Venugopalan, S.; Dingle, T. W. J. Am. Chem. Soc. 1990, 112, 7812–7813.

⁽³⁾ Keller, C. S. Tetrahedron Lett. 1978, 2361-2362.

⁽¹³⁾ Minkin, V. I.; Glukhovtsev, M. N.; Simkin, B. Y. Aromaticity and Antiaromaticity; Wiley: New York, 1994.

Chart 1

shielding from the metal, $C-C(\sigma)$, $C-C(\pi)$, C-H, M-C, etc., localized orbitals^{16–20} to analyze the ring currents in **1**, (*cis*-1,3-butadiene)Cr(CO)₄ (**4**), (C₆H₆)₂Cr (**5**), (C₄H₄)Fe(CO)₃ (**6**), and (*cis*-1,3-butadiene)Fe(CO)₃ (**8**). The total $C-C(\pi)$ contribution (NICS_{π}) is a particularly relevant measure of aromaticity.

Calculation Methods

Structures 1, 4, 5, 6, 7, 8, ethene (D_{2h}) , *cis*-1,3-butadiene $(C_{2\nu})$, cyclobutane (D_{2d}) , cyclobutane $(C_{2\nu})$, cyclobutadiene (D_{2h}) , benzene

(14) Schleyer, P. v. R.; Jiao, H. Pure Appl. Chem. 1996, 68, 209.

(15) (a) Dauben, H. J., Jr.; Wilson, J. D.; Laity, J. L. J. Am. Chem. Soc. **1968**, 90, 811–813. (b) Dauben, H. J., Jr.; Wilson, J. D.; Laity, J. L. J. Am. Chem. Soc. **1969**, 91, 1911–1998. (c) Dauben, H. J., Jr.; Wilson, J. D.; Laity, J. L. In Nonbenzenoid Aromatics; Synder, J. P., Ed.; Academic Press: New York, 1971; Vol. 2.

(16) Schleyer, P. v. R.; Maerker, C.; Dransfeld, A.; Jiao, H.; van Eikema Hommes, N. J. R. J. Am. Chem. Soc. **1996**, 118, 6317–6318.

(17) Schleyer, P. v. R.; Jiao, H.; van Eikema Hommes, N. J. R.; Malkin,
 V. G.; Malkina, O. L. J. Am. Chem. Soc. 1997, 119, 12669–12670.

(18) (a) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Gill, P. M. W.; Johnson, B. G.; Robb, M. A.; Cheeseman, J. R.; Keith, T.; Petersson, G. A.; Montgomery, J. A.; Raghavachari, K.; Al-Laham, M. A.; Zakrzewski, V. G.; Ortiz, J. V.; Foresman, J. B.; Cioslowski, J.; Stefanov, B. B.; Nanayakkara, A.; Challacombe, M.; Peng, C. Y.; Ayala, P. Y.; Chen, W.; Wong, M. W.; Andres, J. L.; Replogle, E. S.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Binkley, J. S.; Defrees, D. J.; Baker, J.; Stewart, J. P.; Head-Gordon, M.; Gonzalez, C.; Pople, J. A. Gaussian 94, Revision C.3; Gaussian Inc.: Pittsburgh, PA, 1995. (b) Hehre, W.; Radom, L.; Schleyer, P. v. R.; Pople, J. A. *Ab initio Molecular Oribital Theory*; Wiley: New York, 1986.

(19) (a) Malkin, V. G.; Malkina, O. L.; Eriksson, L. A.; Salahub, D. R. *Modern Density Functional Theory:* Seminario, J. M., Politzer, P., Eds.;
Elsevier: Amsterdam, 1995; pp 273–347. (b) Malkin, V. G.; Malkina, O.
L.; Eriksson, L. A.; Salahub, D. R. J. Am. Chem. Soc. 1994, 116, 5898–5908. (c) Pipek, J.; Mezey, P. G. J. Chem. Phys. 1989, 90, 4916–4932.

(20) The total NICS value at the center of an aromatic compound (and above) is a sum of paratropic contributions (mostly from $C-C(\sigma)$ bonds) and diatropic contributions (notably $C-C(\pi)$ bonds) (Table 1). The paratropic contributions fall off quickly above the ring plane compared to the diatropic values.

 (D_{6h}) , Cr(CO)₆ (O_h) , and Fe(CO)₅ (D_{3h}) were optimized at the B3LYP/ 6-311+G** level, either taken from ref 1 or carried out in the present study, using the Gaussian 94 program.¹⁸ Magnetic susceptibilities were obtained at the same level using the CSGT procedure. NICS calculations were carried out at the SOS-DFT-IGLO level^{19a,b} using the Perdew-Wang-91 exchange correlation functional and the IGLO III TZ2P basis set with the Pipek-Mezey localization procedure^{19c} as implemented in the deMon NMR program.

Results and Discussion

NICS values were obtained at a central point in the plane of the rings (NICS(0)), or at points above the ring, e.g. NICS(1) refers to calculations at a distance of 1.0 Å above the ring. NICS values can also be dissected into the contributions from various bonds in the molecule. Large negative NICS_{π} values indicate a diatropic ring current (NMR shielding).

The NICS(0) and NICS(1) values for **1** and for benzene are shown in Table 1. The large NICS(0) value for **1**, -25.8, as compared to benzene (-8.8), can be understood from the dissected NICS calculations (Figure 1). The paratropic contributions from the C-C(σ) bonds of the benzene ring in **1** at NICS-(0) (11.9) and for free benzene (13.8) are very similar. For both **1** and benzene, the major contribution to the NICS(0) comes from the C-C(π) orbitals of the benzene ring, NICS(0)_{π} -23.2 for **1** and -20.7 for benzene (Table 1), indicating strong aromaticity. At 1.0 Å above the ring plane the contributions from the C-C(σ) bonds (2.8) and from the metal (-3.2) for **1** are much reduced but the C-C(π) contributions (-9.3) are substantial. Similar results can be seen for benzene, NICS(1)_{σ} (2.4), and NICS(1)_{π} (-9.6).

If 1 exhibits as strong a ring current as that of benzene, why did the MSE evaluation using eq 1 result in positive values? Isodesmic equations such as eqs 1 and 2 are valid only if the reference compounds have no ring current effects, which is true for eq 2 but not for eq 1. The butadiene complex, 4, is a three-dimensional aromatic compound²¹ and has exalted magnetic susceptibilities (eq 3). Since eq 1 employs three butadiene complexes (4) for each benzene ring in 1, the "3 vs 1" weighting results in a bias.

$$4 (C_s) + Cr(CO)_6 (O_h) + 2C_2H_4 (D_{2h}) = C_4H_6 (C_{2h}) + 2(\text{ethylene})Cr(CO)_5 (C_{2h}) (3)$$

 $MSE(\Lambda) = -9.7$ ppm cgs; $ASE(\Delta E) = 6.3$ kcal/mol

After correcting eq 1 for the exaltation of $(C_4H_6)Cr(CO)_4$, the MSE (-17.2 ppm cgs) and ASE (37.5 kcal/mol) of **1** (eq 4) are similar to the benzene values (eq 2).

$$1 (C_{3\nu}) + 2Cr(CO)_6 (O_h) + 6C_2H_4 (D_{2h}) = 3C_4H_6 (C_{2\nu}) + 3(ethylene)Cr(CO)_5 (C_{2\nu}) (4)$$

$$MSE(\Lambda) = -17.2 \text{ ppm cgs}; ASE(\Delta E) = 37.5 \text{ kcal/mol}$$

The benzene ¹H chemical shifts in **1** (5.8) and in free benzene (7.6) differ by 1.8 ppm (Table 1). The difference in the ¹H chemical shifts of **1** and benzene is due to the changes in the electron density of the C–H bonds, as the shielding contributions of C–C(π) orbitals for **1** (2.1) and for benzene (2.2) are very similar.^{22,23} Judging from the NICS(1) $_{\pi}$, MSE, and ASE values, there is no disruption of the ring current of benzene on complexation.

^{(21) (}a) Jemmis, E. D.; Schleyer, P. v. R. J. Am. Chem. Soc. 1982, 104, 4781–4788. (b) Jemmis, E. D. J. Am. Chem. Soc. 1982, 104, 7017–7020.

Table 1. The C–C and Metal–Carbon (M–C) Bond Lengths, NMR Shielding Contributions (signs reversed) from the Various Localized MO's to the Total Nucleus Independent Chemical Shift (NICS) Values at IGLO/III//B3LYP/6-311+ G^{**} , along with the Proton Chemical Shifts

	1								
	C-C(Å)	$M-C(Å)^a$	NICS	$NICS_{\sigma}$	$NICS_{\pi}$	С-Н	$M-C^a$	rest ^c	¹ H(C-H)
benzene (D_{6h})	1.395		$-8.8(-10.6)^{b}$	13.8(2.4)	-20.7(-9.6)	-1.3(-2.0)		-0.6(-1.4)	$7.6(-1.2)^d$
<i>cis</i> -1 ,3-butadiene (C_{2v})	1.337, 1.470		0.3(-1.1)	6.7(0.9)	-6.4(-0.6)	0.2(0.0)		-0.5(0.0)	5.8(-1.4)
$C_4H_4(D_{2h})$	1.333, 1.577		20.9(12.7)	22.2(1.7)	-0.2(14.1)	-1.6(-2.8)		-0.5(-0.3)	5.9(-1.0)
$1(C_{3v})$	1.421, 1.402	2.247	-25.8(-13.2)	11.9(2.8)	-23.2(-9.3)	-4.1(-3.9)	-8.3(-3.2)	-2.1(0.0)	5.8(-0.3)
$4(C_s)$	1.383, 1.442	2.374, 2.227	-16.3(-6.9)	3.4(2.6)	-9.2(-4.2)	-2.7(-2.4)	-8.1(-3.3)	0.3(0.4)	3.7(-0.2)
5 (D_{6h})	1.416	2.171	-37.8(-17.4)	9.2(3.0)	-21.9(-9.3)	-3.0(-3.0)	-10.4(-4.0)	-11.5(-4.1)	4.5(-0.4)
6 $(C_1)^e$	1.442, 1.444	2.08, 2.06	-30.1(-7.7)	11.4(3.1)	-21.4(-4.3)	-6.1(-4.2)	-10.1(-2.4)	-3.9(-0.9)	2.5(-0.2)
	1.459, 1.460	2.06, 2.04							
$8(C_s)$	1.421, 1.413	2.130, 2.082	-19.8(-8.7)	3.1(2.3)	-6.4(-2.8)	-3.2(-2.1)	-13.8(-6.0)	0.4(-0.1)	4.3(0.7)

^{*a*} M–C, metal–carbon distances. ^{*b*} NICS(1) values are given in parentheses. ^{*c*} Contributions from the core AO's, lone pairs, and valance AO's of transition metals. ^{*d*} ¹H chemical shifts relative to TMS; relative (TMS) chemical shifts of C–H bond contributions are given in parentheses. ^{*e*} In ref 1, the structure of **6** was calculated in a C_s symmetry such that one CO group bisects the C–C bonds of the cyclobutadiene unit. However, an X-ray structure shows the other C_s geometry: Harvey, P. D.; Schaefer, W. P.; Gray, H. B.; Gilson, D. F. R.; Butler, I. S. *Inorg. Chem.* **1988**, *27*, 57. Optimization of **6** in C_1 symmetry gives a structure very close to the X-ray geometry but with the same energy as for the previous calculation, showing that the Fe(CO)₃ is nearly a free rotor. The magnetic susceptibility is identical for both calculated geometries. We thank W. Herndon for informing us of this discrepancy and of his own calculations of this system.

Figure 1. Total NICS values of **1** and benzene (IGLO/III/B3LYP/6-311+G**) calculated at the center of the six-membered rings and at points 0.5 Å apart. The $C-C(\pi)$ contributions to NICS are given in parentheses.

Replacement of the three carbonyl groups in 1 by another benzene, $(C_6H_6)_2Cr$ (5), shortens the M-C_{ring} distances in 5 (2.171 Å) compared to 1 (2.247 Å) and results in equal C-C bond lengths. While the total NICS(0) (-37.8) and NICS(1) (-17.4) values of **5** are even larger than **1** (Table 1), the C-C(π) contributions to NICS are very similar (NICS(0) $_{\pi}$ -21.9 and NICS(1) $_{\pi}$ -9.3 for **5** and -23.2 and -9.3 for **1**) (Table 1). The changes in metal contributions influence the total NICS values but have negligible effects on the ring current.

In contrast to the negative NICS values, downfield ¹H chemical shifts, and diatropic contributions from the π electrons of benzene, singlet cyclobutadiene (D_{2h}) displays the opposite behavior (positive NICS values, no change in the chemical shifts of protons and paratropic contributions from π electrons) (Table 1).²⁴ A widely recognized example of a metalloaromatic complex is (C₄H₄)Fe(CO)₃, **6**.²⁵ The behavior of (C₄H₄)Fe(CO)₃, **6**, and cyclobutadiene also is completely different. Most significant are the NICS(1) (-7.7 for **6** and 12.7 for C₄H₄ (D_{2h})) and NICS(1)_{π} (-4.3 for **6** and 14.1 for C₄H₄ (D_{2h})) values. Likewise, using the "strain corrected" eqs 5 and 6, the paratropic MSE for C₄H₄ (D_{2h}) is reversed, and the ASE becomes highly stabilizing for Fe(CO)₃ complexation, befitting the aromatic character of **6**.

$$6 (C_1) + \text{cyclobutane} (D_{2d}) + \text{Fe}(\text{CO})_5 = 2(\text{cyclobutene})\text{Fe}(\text{CO})_4 (C_1) 7 (5)$$

 $MSE(\Lambda) = -19.8 \text{ ppm cgs}; ASE(\Delta E) = +24.1$

 $C_4H_4(D_{2h}) + \text{cyclobutane}(D_{2d}) = 2\text{cyclobutene}(C_{2v})$ (6)

 $MSE(\Lambda) = +9.8 \text{ ppm cgs}; ASE(\Delta E) = -35.4$

The eq 5 ASE value is a very realistic estimate of the aromaticity associated with **6** since an attempt is made to account for the strain energy of the four-membered ring in **6**. The eq 6 ASE is also "strain corrected" and the total 59.5 kcal/mol difference in the two energies is a measure of how much cyclobutadiene is stabilized by the Fe(CO)₃ complexation.

Do the NICS values for the 1,3-butadiene complexes, (C_4H_6) -Cr(CO)₄, **4**, and (C_4H_6) Fe(CO)₃, **8**, provide evidence for threedimensional aromaticity?²¹ In agreement with the -9.7 ppm cgs MSE and 6.3 ASE for **4** (eq 3), the NICS(1) -6.9 and NICS- $(1)_{\pi}$ -4.2 are significant compared to the corresponding values NICS(1) -1.1 and NICS(1)_{\pi} -0.6 for *cis*-1,3-butadiene (*C*₂*v*). The (C₄H₆)Fe(CO)₃, **8**, has NICS(1) -8.7 and NICS(1)_{\pi} -2.8 but a negligible MSE -1.0 ppm cgs and moderate stabilization

(25) Bursten, B. E.; Fenske, R. F. Inorg. Chem. 1979, 18, 1760-1765.

⁽²²⁾ The shielding contributions of **1** and benzene are (signs not reversed) as follows: for **1** total 25.2; individual MO contributions C–H (24.6), rest of the C–H (-0.1), C–C(σ) (-2.6), C–C(π) (2.1), C–O (-0.5), Cr–C (1.2), and Core (0.5); for benzene: total 23.7; C–H (25.7), rest of the C–H (-0.2), C–C(σ) (-3.7), C–C(π) (2.2), and Core (-0.3).

⁽²³⁾ Fleischer, U.; Kutzelnigg, W.; Lazzeretti, P.; Mulenkamp, V. J. Am. Chem. Soc. 1994, 116, 5298–5306.

⁽²⁴⁾ Jiao, H.; Schleyer, P. v. R. Antiaromaticity: Evidence from Magnetic Criteria. In *AIP Conference Proceedings 330*; Bernardi, F., Rivail, J. L., Eds.; American Institute of Physics Press: New York, 1995; pp 107–128.

ASE (7.9 kcal/mol) (eq 7). On the basis of the magnetic properties, 8 seems to be less aromatic than 4.

$$8 (C_s) + \text{Fe}(\text{CO})_5 (D_{3h}) + 2\text{C}_2\text{H}_4 (D_{2h}) = 2(\text{ethylene})\text{Fe}(\text{CO})_4 (C_{2\nu}) + \text{C}_4\text{H}_6 (C_{2\nu}) (7)$$

 $MSE(\Lambda) = -1.0$ ppm cgs; $ASE(\Delta E) = 7.9$ kcal/mol

We conclude that $Cr(CO)_3$ complexation does not reduce the aromaticity of benzene, judging from the $NICS(1)_{\pi}$ values of benzenes in 1 and 5 to that of benzene itself. In contrast, the strongly antiaromatic cyclobutadiene becomes aromatic in the

Fe(CO)₃ complex, and the latter shows a large diatropic ring current. The three-dimensional aromaticity of the butadiene complex of Cr(CO)₄, **4**, is larger than that of the Fe(CO)₃ complex, **7**. Based on the C-C(π) contributions to the NICS at 1.0 Å (NICS(1)_{π}) the ring current order is the following: benzene $\sim 1 \sim 5 > 6 > 4 > 8$.

Acknowledgment. P.v.R.S. and B.K. thank the Deutsche Forschungsgemeinschaft for financial support. D.V.S. and T.S.S. thank the Natural Sciences and Engineering Research Council of Canada for a scholarship and other financial support.

JA9921423